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1. Introduction

The low energy limit of string theory gives rise to gravitational model coupled to other

fields, which typically have black hole solutions. The black hole attractor mechanism

has been an interesting subject over the past several years, which states that the near

horizon geometry and field configurations turn out to be completely independent of the

asymptotic values of radially varying moduli fields of the theory, especially, the moduli

fields are attracted to certain specific values at the horizon which are dependent only on

certain conserved quantities, such as charges associated with the gauge fields and angular

momentum. As a result, the macroscopic entropy of the black hole is given only in terms

of these conserved charges and is independent of the asymptotic values of the moduli.

The attractor mechanism was discovered first in N = 2 BPS black holes [1 – 4]. Later it

was found that the concept of attractor mechanism can also work in a rather broad context,

especially in non-supersymmetric cases [5, 6]. The non-supersymmetric attractors was

further clarified in [11]. The authors considered theories of gravity coupled to gauge fields

and scalars in four and higher dimensions which are asymptotically flat or AdS. Through

perturbative and numerical analysis of the full equations of motion, it was shown that the

attractor mechanism can work for non-supersymmetric extremal black holes. The entropy

function formalism proposed by Sen [7 – 10], is proved to be very useful in calculating the

entropy of extremal black holes in a general theory of gravity. By analyzing the near-

horizon field configurations, it is also shown that the macroscopic entropy is independent

of the asymptotic values of the moduli, which implies the presence of attractor behavior.

Especially, it becomes clear that the attractor behavior is a general phenomenon in extremal

black holes, which have AdS as part of their near-horizon geometries. Following these

developments, there has been a surge of interest in studying the attractor mechanism

without the use of supersymmetry, which shows that the attractor mechanism can work

for non-supersymmetric extremal black holes, by analyzing the full solutions or by using

entropy function formalism [12 – 24]. For a recent review of these developments, see [25].
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The attractor mechanism has been proved to be very helpful to study the properties of

extremal black holes which are non-supersymmetric solutions in supersymmetric theories

and also solutions in theories which have no supersymmetry. Especially, it can be very

useful to understand the structure of higher derivative terms in a general theory of grav-

ity [9, 10, 26 – 33]. It is well-known that the low energy limit of string theory gives rise to

the effective action of gravity which involves a variety of higher derivative terms coming

from both the gravity and the gauge fields sides. The existence of non-supersymmetric at-

tractor mechanism in the presence of higher derivative terms has been recently investigated

in [29]. A lot of interesting aspects of Lovelock terms, Chern-Simons terms, Born-Infeld

terms etc., have been studied [34 – 38].

The analysis of [11] is based on the studying of the full equations of motion of the

metric, gauge fields and scalar fields directly. However, in the absence of supersymmetry,

the existence of a full black hole solution interpolating between the near-horizon geometry

and the asymptotically infinity is non-trivial, especially when there are higher derivative

terms included. Furthermore, a full low energy effective action of string theory has not

been known yet. Thus it is important to study non-supersymmetric attractor mechanism

when there are different kinds of higher derivative terms following from the low energy

limit of string theory, such as Gauss-Bonnet term on the gravity side and Born-Infeld term

on the gauge fields side.

In recent years the Born-Infeld action has been occurring repeatedly with the devel-

opment of superstring theory, where the dynamics of D-branes are governed by the DBI

action. Extending the Reissner-Nordström black hole solutions in Einstein-Maxwell theory

to the charged black hole solutions in Einstein-Born-Infeld theory with/without a cosmo-

logical constant has also attracted much attention in recent years [39 – 50]. The attractor

mechanism of black holes in Einstein-Born-Infeld theory of gravity coupled to scalar fields

has been studied in [36] by using entropy function formalism and in [37, 38] by using effec-

tive potential for the scalars and perturbation method. Using a perturbative approach to

study the corrections to the scalar fields and taking the backreaction into the metric, it is

shown that the scalar fields are indeed drawn to fixed values at the horizon.

In this note, we generalize the result of [36 – 38] to the case in the presence of a cos-

mological constant, where the spacetime is non-asymptotically flat. Following the analysis

in [36 – 38], we show that the extremal EBI-AdS black hole solutions with regular near-

horizon configurations indeed exist and possess the attractor behavior. In fact, most of the

works concerning attractor mechanism have been done in the asymptotically flat spacetime,

therefore it is very interesting to generalize the analysis to the non-asymptotically flat case,

especially asymptotic AdS. Thus due to the AdS/CFT correspondence, one might be able

to make a connection between the attractor behavior of these AdS black holes and some

properties in the dual gauge theories.

This note is organized as follows. In section 2, we briefly review the relevant features

of attractor mechanism needed for our purposes, following the outline of [11]. In section 3,

we study the Einstein-Born-Infeld theory of gravity coupled to scalar fields, in the presence

of a cosmological constant. In section 4, a perturbative analysis is made to find possible

extremal black hole solutions. We discuss the existence of the solutions, calculate the
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horizon radius and attractor values of the moduli fields. It is shown that moduli fields

indeed get attracted to fixed values at the horizon. This result implies the presence of

attractor mechanism in Einstein-Born-Infeld-dilaton theory in the non-asymptotically flat

spacetime. Finally in section 5 we summarize our results.

2. Brief review of non-supersymmetric attractor mechanism

In this section we make a brief review of some relevant aspects of non-supersymmetric

attractors in four dimensional asymptotically flat spacetime, following the analysis of [11].

We consider gravity coupled U(1) gauge fields and scalars. The scalars are coupled to

gauge fields with dilatonic couplings. The action has the form1

S =
1

κ2

∫

d4x
√
−G

(

R − 2∂µφi∂µφi − fab(φi)F
a
µνF bµν − 1

2
f̃ab(φ

i)ǫµνρσF a
µνF b

ρσ

)

, (2.1)

where F a
µν , a = 0, · · · , N are U(1) gauge fields and φi, i = 1, · · · , n are scalar fields, fab(φ

i)

and f̃ab(φ
i) determine the gauge couplings. It is important that the scalars do not have a

potential so that there is a moduli space obtained by varying their values. However, we will

see that the coupling of these scalars with the gauge fields acts like an “effective potential”

for the scalars.

The equations of motion for the metric, dilatons and gauge fields are derived from the

action (2.1) as follows:

Rµν − 2∂µφi∂νφ
i = fab(φ

i)

(

−2F a
µλF bλ

ν − 1

2
gµνF a

µνF bµν

)

, (2.2)

1√
−G

∂µ

(√
−G∂µφi

)

=
1

4
∂i(fab)F

a
µνF bµν − 1

8
∂i(f̃ab)ǫ

µνρσF a
µνF b

ρσ , (2.3)

∂µ

(√
−G

(

fab(φ
i)F bµν +

1

2
f̃ab(φ

i)ǫµνρσF b
ρσ

))

= 0 , (2.4)

in (2.3) ∂i ≡ ∂/∂φi. We also have the Bianchi identity for the gauge fields

∂µF a
νρ + ∂νF a

ρµ + ∂ρF
a
µν = 0 . (2.5)

We consider static and spherically symmetric configurations. In 3 + 1 dimensions the

metric and the gauge fields can be taken to be of the form:

ds2 = −α2(r)dt2 +
dr2

α2(r)
+ β2(r)dΩ2

2 , (2.6)

F a = F a
trdt ∧ dr + F a

θϕdθ ∧ dϕ . (2.7)

The equations of motion and the Bianchi identities for the gauge fields can be solved

directly by taking the gauge fields strengths to be of the form:

F a = fab(φi)(Qeb − f̃bc(φ
i)Qc

m)
1

β2
dt ∧ dr + Qa

m sin θdθ ∧ dϕ , (2.8)

1Here we choose the convention ǫµνρσ =
√
−Gεµνρσ and ǫ

µνρσ = 1√
−G

ε
µνρσ, with ε0123 = ε

0123 = +1.
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where Qa
e and Qa

m are constants that determine the electric and magnetic charges carried

by the gauge field F a, and fab is the inverse of fab. Under the ansatz (2.6) and (2.8), it

is possible to derive a set of second order differential equations for α(r), β(r) and φ(r) as

follows:

(

α2(r)β2(r)
)′′

= 2 , (2.9)

(

∂rφ
i
)2

+
β′′

β
= 0 , (2.10)

−1 + α2β′2 +
α2′β2′

2
= −Veff(φi)

β2
+ α2β2

(

∂rφ
i
)2

, (2.11)

∂r

(

α2β2∂rφ
i
)

=
1

2β2

∂Veff(φi)

∂φi
, (2.12)

where (2.11) is the first order Hamiltonian constraint and the effective potential Veff(φi) is

given by:

Veff(φi) = fab(Qea − f̃acQ
c
m)(Qeb − f̃bdQ

d
m) + fabQ

a
mQb

m . (2.13)

The equations of motion given above can be derived from a one-dimensional effective action:

S =
1

κ2

∫

dr

(

2 −
(

α2β2
)′′ − 2α2ββ′′ − 2α2β2(∂rφ

i)2 − 2Veff(φi)

β2

)

, (2.14)

the Hamiltonian constraint (2.11) must be imposed in addition. We see that Veff(φ) plays

the role of an effective potential for the scalars.

We can now state two conditions which are sufficient for the existence of an attrac-

tor [11]. First, the charges should be such that the resulting effective potential Veff , as

in (2.13), has a critical point. We denote the critical values for the scalars as φi(r) = φi
0,

so that
∂Veff(φi)

∂φi

∣

∣

∣

∣

φi=φi
0

= 0 . (2.15)

Second, the matrix of second derivatives of the effective potential at the critical point,

Mij ≡
∂2Veff(φ)

∂φi∂φj

∣

∣

∣

∣

φi=φi
0

, (2.16)

should have positive eigenvalues. Schematically we may write

Mij > 0 . (2.17)

This condition guarantees the stability of the solution. Once these two conditions hold, it

was argued in [11] that the attractor phenomenon results. Typically, there is a extremal

black hole solution in the theory, where the black hole carries the charges determined by

the paramters Qa
e and Qa

m. The moduli fields take critical values φi
0 at the horizon, which

are independent of their values at infinity, i.e., although φi are free at infinity as moduli

fields, they are attracted to fixed values φi
0 at the horizon.

As discussed in the introduction, the entropy function formalism [7 – 10] is a simple

and powerful tool to calculate the entropy of a extremal black hole in a general theory of
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gravity, especially, the fact that the near-horizon field configurations are determined by

extremizing the entropy function and the entropy is independent of the asymptotic values

of the scalars implies the presence of attractor mechanism. The entropy function formalism

focuses on the analysis of near-horizon configurations, without known the full black hole

solutions. However, to see the moduli fields indeed get attracted to fixed values when

approaching the horizon, we have to use the formalism for nonsupersymmetric attractor

mechanism reviewed in this section, which make explicit use of the general solutions and

equations of motion.

3. Einstein-Born-Infeld-dilaton theory with a cosmological constant

We start with the following Einstein-Born-Infeld-dilaton action in 3 + 1 dimension in the

presence of a cosmological constant Λ:

S =
1

κ2

∫

d4x
√
−G

[

R − 2Λ − 2∂µφi∂µφi + LBI(F )
]

, (3.1)

where

LBI(F ) = 4b2s−1
(

1 −
√

1 + Y
)

, (3.2)

Y ≡ s2F 2

2b2
− s4

16b4
(F ∗ F )2 . (3.3)

b is the Born-Infeld parameter which has the dimension of mass, s = s(φi) is the dilatonlike

gauge coupling, and F 2 ≡ FµνFµν , F ∗ F ≡ Fµν(∗F )µν . In (3.1) for simplicity we consider

only one gauge field, if there are more than one gauge field, each gauge field contributes a

Born-Infeld term as (3.2) but with different dilatonlike gauge couplings. In string theory,

the Born-Infeld parameter b is related to the string tension as b = 1
2πα′ . Note that when

b → ∞ the Einstein-Born-Infeld theory reduces to the Einstein-Maxwell theory.

For simplicity, we restrict ourselves to the single scalar and gauge field case. One can

generalize the result to the case with several scalars and gauge fields. We consider static

and spherically symmetric solution, thus we assume the metric and gauge field to be of the

form as (2.6) and (2.7). We can solve the gauge field first. Taking variation with respect

to Fµν gives

∂µ

(√
−Gs−1 Xµν

√
1 + Y

)

= 0 , (3.4)

in which

Xµν ≡ s2Fµν

b2
− s4(F ∗ F )ǫµνρσFρσ

8b4
. (3.5)

We also have the Bianchi identity as (2.5). Under the static spherically symmetric ansatz,

the equation of motion for the gauge field (3.4) and the Bianchi identity (2.5) can be solved

as

Ftr =
s−1Qe

β2
√

1 + Q2
e+Q2

ms2

b2β4

, Fθϕ = Qm sin θ . (3.6)

– 5 –
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Here Qe and Qm are integration constants and are related to the electric and magnetic

charges carried by the gauge field.

Taking variation of the metric gives the Einstein equation:

Rµν − 2∂µφ∂νφ − GµνΛ = −2Gµνb2s−1

(

1 − 1√
1 + Y

)

− 2s√
1 + Y

FµλF λ
ν , (3.7)

here Fµν is given by (3.6). After substituting the metric ansatz (2.6), the Rrr−(Grr/Gtt)Rtt

component of the Einstein equaton (3.7) gives

(∂rφ)2 +
β′′

β
= 0 . (3.8)

The Rrr component itself yields:

(

α2′β2

2

)′

+ β2Λ = 2b2β2s−1



1 − 1
√

1 + Q2
e+Q2

ms2

b2β4



 . (3.9)

Also the (Rtt − GttΛ)/(Rθθ − GθθΛ) component gives:

− 1 +

(

α2β2′

2

)′

+ β2Λ +
1

β2
Veff(φ) = 0 . (3.10)

Finally, the equation of motion for the scalar φ(r) takes the form:

∂r

(

α2β2∂rφ
)

=
1

2β2

∂Veff

∂φ
, (3.11)

in which

Veff(φ) = 2b2β4s−1

(
√

1 +
Q2

e + Q2
ms2

b2β4
− 1

)

. (3.12)

We see that Veff(φ) plays the role of an “effective potential” for the scalar field. Here

Veff(φ), in contrast with Einstein-Maxwell theory, is a function of r, as a result of to the

nonlinearity of Born-Infeld theory. However, as argued in [15], it is possible to treat r as

just a parameter near the horizon. Extremizing the effective potential and restricting the

result to the near-horizon region give the desired fixed values taken by the moduli fields at

the horizon.

4. Perturbative analysis

In principle, one may suppose that if we indeed get a full black hole solution of our theory

with desired boundary conditions, we can “see” the attractor behavior directly from the

r-dependance of the dilaton fields φ(r). However, in a general theory of gravity with gauge

fields and scalar couplings, it is very difficult to find a full set of exact solutions. On the

other hand, to see the attractor mechanism indeed exists, the near-horizon behavior of our

black hole solution is enough, even though the full solution is not known.

– 6 –
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A perturbative method was developed in [11]. Generally, the essential idea of the

perturbative analysis is to start with an extremal black hole solution of a the gravity,

gauge fields and scalars system, obtained by setting the asymptotic values of the scalars

equal to their critical values as in (2.15), then examine what happens when the scalars take

values at asymptotic infinity which are somewhat different from their attractor values at

the horizon. From (2.9)–(2.13) we can see that in common Einstein-Maxwell theory, if we

set the asymptotic values of the scalars to their critical values at the horizon, we can set

them to constants everywhere. Thus the equations of motion (2.9) are much simplified,

especially, we get a extremal black hole solution, i.e., extremal Reissner-Nordström black

hole with constant scalars.

Thus one may suppose there is a similar extremal Einstein-Born-Infeld black hole

solution with constant-valued moduli, which can be used as the starting point of the per-

turbative analysis. Black hole solutions of Einstein-Born-Infeld theory without any moduli

fields have been constructed in [39 – 47] in asymptotic flat spacetime, and in [48 – 50] in

the presence of a cosmological constant. In the absence of moduli fields, the geometries

are asymptotically flat and asymptotically (A)dS respectively. However, in the presence of

moduli fields, the existence of a set of black hole solutions with desired boundary conditions

is highly non-trivial. From (3.11) and (3.12) we can see that in contrast with Einstein-

Maxwell-dilaton theory, which holds a constant moduli as its exact solution, due to the

nonlinearity, the Einstein-Born-Infeld-dilaton theory does not possess a black hole solution

with everywhere constant moduli.2

Thus, we take an analysis which is a little different from [11]. In view of the fact that

the four equations of motion (3.8)–(3.11) are a set of highly complicated coupled differential

equations of order four, we follow the Frobenius method to solve these equations as in [36 –

38]. We define x ≡
(

r
rH

− 1
)

as the parameter of expansion, i.e., we will find the solutions

of α(r), β(r) and φ(r) in terms of x order by order. We assume the solutions to be

extrmal, this guarantees the existance of the attractor mechanism. Especially, we assume

the solution has a double-zero horizon,3 α2(r) ≡ (r − rH)2α̃2(r) with α̃2(r) being regular

at the horizon r = rH. Second, as a cosmological constant is included in the theory, we

assume the solution to be asymptotically (A)dS. Also, we are interested in solutions which

is regular at the horizon, i.e. those with scalars do not blow up when approaching the

horizon.

We note that, from (3.12), Veff(φ) does not have a minimum for any finite value of φ

in the case of a single electric or magnetic charge. In order to have a minimum in a single

charge case we need at least two gauge fields. On the other hand, the non-existence of

the extremal limit for electrically charged black holes with Born-Infeld term was proposed

in [44, 36]. Thus we consider the dyonic case, with both electric and magnetic charges are

non-zero.

2It is well known that the equations of motion admit AdS2 × S
2 as a solution in the case of constant

moduli.
3As discussed in [16, 17, 38], there is no attractor mechanism in the single-zero horizon case. Some

authors have shown that the entropy function formalism also works well for some non-extemal black holes,

even though in general there is no attractor there [51 – 53].
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The most general Frobenius expansions of α(r), β(r) and φ(r) take the form as:

α2(r) = α2
Hx2

∞
∑

m,n=0

am,nxmλ+n ,

β(r) = rH

∞
∑

m,n=0

bm,nxmλ+n ,

φ(r) =
∞
∑

m,n=0

φm,nxmλ+n ,

(4.1)

In contrast with [11, 37] where λ is assumed to be λ ≪ 1, here we assume λ ≥ 1 in order

to guarantee (∂rφ) do not blow up at the horizon. From the expansion(4.1), φ0 = φ(rH)

and so the moduli field is always fixed at the horizon, regardless of any other information.

Thus as argued in [37, 38], to complete the proof of the attractor behavior, we should

be able to show that the four sets of equations of motion, denoting a coupled system of

differential equations, admit the expansions as (4.1). Furthermore, one should see that

there are solutions to all orders in the x-expansion with arbitrary asymptotic values at

infinity, while the value at the horizon is fixed to be φ0. We should mention that in the

Einstein-Born-Infeld-dilaton theory, the existence of a complete set of solutions with desired

boundary conditions by itself is not trivial.

Now let us take s(φ) = e−2γφ(r), where γ is a parameter characterizing the coupling

strength of dilaton field. Note that in string theory γ = 1.

Zeroth order results. We start with a extremal black hole solution with double-zero

horizon at zeroth order perturbation:

φ0(r) = φ0 , β0(r) = rH , α0(r) = αH

(

r

rH
− 1

)

, (4.2)

we will see that φ0 is the attractor value of the dilaton, rH is the horizon radius. φ0, rH and

αH can be determined in terms of given electric and magnetic charges. This can be done

by substituting the 0-th order values of the fields (4.2) into the equations of motion (3.8)–

(3.11). From the equation of motion for the dilaton we get:

e−2γφ0 =
Qe

√

Q2
e + b2r4

H

bQmrH
2

. (4.3)

Note that we have the double horizon assumption, i.e., α2(rH) = 0 and α2′(rH) = 0, then

rH can be solved from (3.10),

1 − η
3

ℓ2
rH

2 =
1

r2
H

Veff(φ0) =
2bQeQm

√

Q2
e + b2r4

H

, (4.4)

– 8 –
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where we have parameterized Λ = η 3
ℓ2

, with η = −/ + 1 for AdS/dS respectively. We can

also solve αH from (3.9):

α2
H =

2b3r4
HQeQm

(Q2
e + b2r4

H)3/2
− η

3

ℓ2
rH

2

=
b2r4

H

Q2
e + b2r4

H

(

1 − η
3

ℓ2
r2
H

)

− η
3

ℓ2
rH

2 .

(4.5)

(4.3) and (4.4) together determine the attractor value φ0 and horizon radius rH in terms

of the charges, i.e., φ0 = φ0(Qe, Qm) and rH = rH(Qe, Qm). Especially, due to (4.2) the

Bekenstein-Hawking entropy is determined by the electric and magnetic charges Qe and Qm.

We note that from (4.4), the existence of a real positive root of (4.4), i.e., a extremal

black hole with a double-zero horizon of Einstein-Born-Infeld-dilaton theory in the presence

of a cosmological constant, is not always guaranteed. To analysis this problem, we define

f(rH) = 1+η 3
ℓ2

rH
2− 2bQeQm√

Q2
e+b2r4

H

, thus the question becomes the existence of positive roots of

equation f(rH) = 0. In AdS case, η = −1, we note that f ′(rH) = 6
ℓ2

r2
H+

4b3QeQmr3

H

(Q2
e+b2r4

H
)
3
2

> 0, i.e.,

f(rH) is a monotonically increasing function of rH, and the existence of positive rH demands

that f(0) = 1 − 2bQm < 0. Thus we find a lower bound for value of the magnetic charge

2bQm > 1 in Einstein-Born-Infeld-dilaton theory in the presence of a negative cosmological

constant. Note that in AdS case with η = −1, (4.5) is always meaningful. Thus when

this bound is satisfied, (4.4) has positive solution for rH, i.e., a extremal black hole indeed

exists.4 This bound indeed relaxes in the limit b → ∞. We focus on the case with negative

cosmological constant in the following discussion.

In the presence of a negative cosmological constant Λ = −3/ℓ2, the exact expression

of rH is complicated due to (4.4), which is a biquadratic algebraic equation for r2
H . In the

limit ℓ → ∞, the result is simply rH =
(

4Q2
eQ

2
m − Q2

e/b
2
) 1

4 , which is the horizon radius

in asymptotically flat spacetiem as given in [37, 38]. In the limit b → ∞, Born-Infeld

theory reduces to Maxwell theory, and φ0, αH and rH approach values in Einstein-Maxwell-

Dilaton theory in asymptotically AdS spacetime [11, 54]. For example (4.4) can be solved

perturbatively:

r2
H =

1

6

(

−ℓ2 + ℓ
√

ℓ2 + 24QeQm

)

− 1

b2

54Q3
eQm

(

−ℓ2 + ℓ
√

ℓ2 + 24QeQm

) (

ℓ2 + 30QeQm − ℓ
√

ℓ2 + 24QeQm

) + · · · ,
(4.6)

the first term in the second line of the above expression is the leading Born-Infeld correction

to the horizon radius r2
H of the extremal Reissner-Nordström-AdS black hole in the large b

limit. Also, it is well-known that the extremal RN-AdS black hole contains AdS2 as part

of its near-horizon geometry. From (4.5) we get

α2
H = 1 +

6

ℓ2
r2
H − Q2

e

b2r2
H

(

1 +
3

ℓ2
r2
H

)

+ · · · , (4.7)

4Note that this result is consistent with the proposal in [44] about the non-existence of the extremal

limit for purely electrically charged black holes in Einstein-Born-Infeld theories.
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again the third term in (4.7) can be understood as the lowest order Born-Infeld corrections

to α2
H, which is related to the size of AdS2.

First order results. At first order, we can write

α2(r) = α2
Hx2 + δα2 ≡ α2

Hx2(1 + a1,0x
λ + a0,1x) ,

β(r) = rH + δβ ≡ rH(1 + b1,0x
λ + b0,1x) ,

φ(r) = φ0 + δφ ≡ φ0 + φ1,0x
λ + φ0,1x .

(4.8)

Substituting (4.8) into the equations of motion (3.8)–(3.11) and keeping δ(α2), δβ and

δφ as small parameters in perturbation, we get linearized equations in terms of δ(α2), δβ

and δφ. Thus the undetermined coefficients a1,0, etc., and λ can be read out from the

expansions. From the equation of motion for the scalar we get:

δφ = φ1,0

(

r

rH
− 1

)λ

+ φ0,1

(

r

rH
− 1

)

, (4.9)

where φ1,0 is an undertermined constant, and

φ0,1 =
γ

(

α2
H − 3r2

H/ℓ2
) (

1 − α2
H + 6r2

H/ℓ2
)

(

1 + 3r2
H/ℓ2

) (

(γ2 − 1)α2
H − γ23r2

H/ℓ2
) , (4.10)

note that in the limit ℓ → ∞, the above result indeed reduces to φ0,1 = γ(1−α2
H)/(γ2 −1),

which is the case in asymptotically flat spacetime [37, 38]. λ can also be determined as:

λ =
1

2

(

−1 +

√

1 +
4B2

r2
Hα2

H

)

, (4.11)

with B2 ≡ 1
2

∂2Veff

∂φ2 |φ0,rH
. Substituting (4.4) and (4.5) into (4.11) we get

λ =
1

2

(

−1 +
√

1 + 8γ2
(

1 − 3r2
H/ℓ2

)

)

, (4.12)

this result reduces to the asymptotically flat case as ℓ → ∞, thus B2

α2

H
r2

H

= 2γ2 and λ =

1
2

(

−1 +
√

1 + 8γ2
)

as in [37, 38].

As discussed in [37, 38], in comparison to the Einstein-Maxwell theory, here the metric

get corrections at the first order perturbation theory in x-expansion. Thus to this order:

δα2 = α2
Ha1,0

(

r

rH
− 1

)λ+2

+ α2
Ha0,1

(

r

rH
− 1

)3

,

δβ = rH

(

r

rH
− 1

)

,

(4.13)

where

a1,0 =
4γ

(

1 − α2
H + 6r2

H/ℓ2
) (

α2
H − 3r2

H/ℓ2
)

(λ + 1)(λ + 2)α2
H

(

1 + 3r2
H/ℓ2

) φ1,0 ,

a0,1 =
2(α2

H − 3r2
H/ℓ2)

2(1 + 3r2
H/ℓ2)

2

{

1 − α2
H + α4

H +
3r2

H

ℓ2

(

3 + α2
H +

3r2
H

ℓ2

)

+ γ2

(

1 − α2
H +

6r2
H

ℓ2

)2

φ0,1

}

+
2r2

H

ℓ2
− 4

3
.

(4.14)
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Note that from (4.12), the assumption λ ≥ 1 demands that γ2(1 − 3r2
H/ℓ2) ≥ 1, this can

only be satisfied when γ > 1. When this condition is satisfied, this corrections (4.14)

vanishes at the horizon faster than (r/rH − 1)2, thus to this order in x-expansion, the

solution continues to be a double horizon black hole with vanishing surface gravity.

Higher order results. At the second order in x-expansion, the value of scalar field we

found at first order (4.9)–(4.10) plays the role of a source, which results in corrections to

the metric and the scalar field itself. This can be calculated in a similar way as the first

order analysis.

In our perturbation analysis, we solve the equations of motion of our system order by

order in the x-expansion. As argued in [29, 37, 38], we have seen that to the first order,

there is one parameter φ1,0 cannot be determined by the equations of motion themselves.

Let us denote the value of φ1,0 as K. We thus find a1,0 and b1,0 as functions of K. At any

order n ≥ 2, we can substitute the resulting values of (am,l, bm,l, φm,l), for all m + l ≤ n

from the previous orders. Thus (3.8), (3.10), (3.11) of order n and (3.9) of order (n − 1)

give

an,l = an,l(K), bn,l = bn,l(K), φn,l = φn,l(K) , (4.15)

i.e., as polynomials of order n in terms of K. K remains a free parameter to all orders

in the x-expansions. From the Frobenius expansion (4.1), all the coefficients are functions

of the single parameter K, thus the full black hole solutions, especially the asymptotic

values of α(r), β(r) and φ(r) are dependent on the parameter K. After changing bases

from
(

r
rH

− 1
)

to
(

1 − rH

r

)

, it can be shown that α(∞), β(∞) and φ(∞) are free to take

different values given by different choices of K. The convergence of this series should be

addressed in detail, but it should be convergent when |K| is small enough. The fact that

the dilaton φ(r) can take arbitrary value at asymptotic infinity φ(∞) while its value at the

horizon is fixed to be φ0 as given in (4.3) shows the presence of attractor mechanism.

5. Summary and discussion

In this note we studied attractor mechanism in Einstein-Born-Infeld theory coupled to

scalars and with dilaton-like gauge couplings, in the presence of a cosmological constant

in the action. We derived the equations of motion of the system, and looked for possi-

ble extremal black hole solutions with proper boundary conditions using a perturbative

method.

We focused on the case of asymptotic AdS black holes, which are more interesting due

to the AdS/CFT correspondence. We discussed the existence of the extremal black hole

solutions, calculated the double-zero horizon radius and the attractor value of the dilaton.

It is shown that there are different extremal black hole solutions characterized by different

values of the scalars at asymptotic infinity, while the scalar fields are indeed attracted to

certain fixed values at the horizon. This result generalizes the analysis in [29, 37, 38] and

implies the presence of attractor mechanism in the theory.

One can also study the case in asymptotic dS spacetime, though the analysis of exis-

tence of such extremal black holes with desired boundary condition is more complicated.
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